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An Equivalence Principle for Nonuniform
Transmission-Line Directional Couplers

CHARLES B. SHARPE, SENIOR MEMBER, IEEE

Abstract—The analysis of transmission-line directional couplers is
formulated in terms of a pair of first-order matrix differential equations.
It is shown that for every nonuniform directional coupler that is electrically
symmetric, there exists an equivalent pair of dual nonuniform transmis-
sion lines. It is also shown that a matched, transmission-line directional
coupler having an absolutely continuous characteristic impedance matrix
must be symmetric. Restrictions on the terminating impedances and the
implications of these restrictions on the realizability of transmission-line
couplers are investigated. Finally, the tapered-line magic T is treated as
an example.

INTRODUCTION

HE EQUIVALENCE between stepped, transmission-
Tline directional couplers and stepped, transmission-

line filters is well known and has been established
analytically by several authors [1], [2]. These couplers,
which consist of sections of equal-length uniform line, are
usually assumed to be matched at each port and to have
perfect directivity at all frequencies. The equivalence states
that for such structures a two-port transmission-line network
can be found which yields as a solution the desired param-
eters or characteristics of the four-port coupler. The prin-
cipal purpose of this paper is to show that this equiva-
lence holds for a general class of symmetric, nonuniform
directional couplers which includes the stepped coupler as
a special case.

It should be said that the existence of such an equivalence
is implicit in the work of previous authors [3]-[5]. However,
a rigorous justification for its application has not been given.
While this may appear unnecessary from a practical point
of view, it will be shown that such an approach does lead
to some explicit results regarding the realizability of trans-
mission-line directional couplers. Moreover, an analytical
treatment of equivalence will provide a basis for the intro-
duction to the coupled-line problem of synthesis techniques
recently developed for single, nonuniform lines.

The fact that such an equivalence is possible is suggested
by considering the scattering matrix of the general contra-
directional coupler depicted in Fig. 1,
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Fig. 1. A four-port transmission-line coupler.

where s=o+jw denotes the complex frequency variable. It
is well known that for any lossless linear network, S(s) must
be unitary. That is, on the real frequency axis, §'(jw)S(jw)=1,
where the prime denotes the transpose, the bar the complex
conjugate, and 7 the 4X4 unit matrix. This relation is a
special case of the para-unitary condition,

8'(—=9)8(s) = I, 2

which can be derived directly from the Wronskian of the
matrix differential equation describing the system.

In the following it will be assumed that the directional
coupler possesses side-by-side electrical symmetry, that is,
S13(s) = Sa«(s).* In the Appendix it is shown that one has very
little freedom in choosing Sy; and Sy independently. In fact,
for the class of absolutely continuous coupled lines of equal
length Sy must equal Sa. For directional couplers which are
symmetric in this sense (2) reduces to three independent
equations that can be combined into

[S£(—s)]'St(s) = 1, ®3)
where the reduced 2X2 matrices are defined by

iS12(S)

S1s(s) ®

s = |

issz;(s)

In (3) and hereafter 7 will be used to denote the 2X2 unit
matrix. Equation (4) suggests that there exist two single
transmission lines having as their reflection coefficients Sys
and — S1s, respectively, and having S;; as their transmission
coefficient. It will be shown that this conjecture is true for
the class of nonuniform couplers considered.

! This definition of symmetry does not necessarily imply physical
symmetry of any kind.
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THE MATRIX LINE EQUATIONS

It will be obvious that the discussion of this section ap-
plies equally well to n coupled lines. However, nothing is
gained by the added generality, and in the interest of sim-
plicity the discussion will be limited to the case where n=2.
Denote by the column matrices,

-]
w9

the voltages and currents, respectively, on the two lines
depicted in Fig. 1. The coupled, nonuniform line equations
for the lossless case can then be written

de(z) _

= — sL(2)i(2) (6a)
dz
di(z)
= — sC(z)e(?), (6b)
dz

where L(z) and C(z) are real, symmetric 2X2 matrices. It
will be assumed that the elements of L and C are bounded
and integrable functions of z and at each point on the line
satisfy conditions consistent with TEM-mode propagation.
Thus, from energy considerations both L and C must be
positive semidefinite for every z. For reasons which will be
apparent shortly it will be assumed that L and C are actually
positive definite.

In the case of uniformly coupled, parallel conductors in
a homogeneous media the inductance and capacitance ma-
trices in (6a) and (6b) are, of course, independent of z.
Moreover, it is known [6] that LC=CL=pel. It is casily
shown from Maxwell’s equations that this relation as well
as (6a) and (6b) still hold when the media is inhomogeneous
in the z direction, that is, when u=u(z) and e=&(z). It makes
sense to assume, therefore, that in the general nonuniform
case in which the cross section of the structure may also vary
with z that there still exists a positive function ©(z) such that

L()C(z) = CR)L{z) = 1. (7)

v*(2)

This condition is consistent with the TEM assumption
since it implies that at each point z the propagation on both
lines is characterized by the same “local” velocity, v(z).
While (7) is difficult to justify in the case where the propa-~
gating field is not strictly TEM, it will now be shown that
this assumption does lead to the definition of a unique
“local” characteristic impedance matrix which reduces to
the conventional result for the case of uniform coupled lines.
Thus, at each point on the nonuniform structure it is pos-
sible to associate a system of coupled, uniform lines having
the same inductance and capacitance matrices at that point.
As in the case of single lines it would be expected that the
error made in this type of approximation would be accept-
able for coupled lines having only a moderate degree of non-
uniformity.
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Introduce the new variable

@= [ ®

2(z) = —_—
o (®)

Noting that z is determined uniquely in terms of x by this

relation, we will express the spatial dependence of the vari-

ous functions as follows: e[z(x)] =e(x), L[z(x)]=L(x), etc.

Then,

de(z) delz(x)] dx de(z) 1
de  dr de  de v{(2)
Since every positive definite matrix has an inverse and a
unique positive definite square root, (7) and (9) and a similar

equation in #(x) can be used to put (6a) and (6b) in the
symmetric form,

9)

de(x)
= — sZo(x)i(x) (10a)
dx
di(x)
= — sZi Yx)e(2), (10b)
dx

where the characteristic impedance matrix is defined by
Zo(x) = C@)"*L(z)*. (11)

From the assumed properties of L(x) and C(x) it can be
shown that Z(x) is symmetric and positive definite. The
proof follows from the well-known result that if two sym-
metric matrices commute they can be diagonalized by the
same orthogonal matrix [7]. It is evident from (7) that (11)
can also be written

1
Zo(x) = H C(),

so that, given #(x), there is a one-to-one correspondence be-
tween Zo(x) and C(x). The question of whether or not a
particular C(x) can be physically realized in the quasi TEM
sense previously discussed will be deferred until later.

(12)

PROPERTIES OF TRANSMISSION-LINE DIRECTIONAL COUPLERS

The scattering matrix formulation is often the most con-
venient one to use when discussing directional couplers. This
is particularly true of transmission-line couplers if the
scattering matrix is partitioned so as to distinguish between
input and output ports. No assumption will be made in this
section regarding symmetry. It will be assumed initially
that the ith port of the coupler is terminated in a uniform,
lossless line of characteristic impedance #,>0. Therefore,
the scattering matrix is appropriately normalized with re-
spect to the real characteristic impedance matrix,

1 010
| |
0 T2 lO 0 Rl |
R=| i~ |=| 2" gy
0 |r; 0 0 | R
|
0 0:0 T4
|
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If we define the column matrices,

—61(0, S)
e2(0, 8)
E =
A P
—62(l: S)
7;1(07 8)
1:2<0, 8)
= ’ 14
1(s) %ﬂ”% (14)
L—i2(l7 8)
then the scattering matrix S(s) satisfies
b = Sa, (15)
where
2a(s) = R~2E(s) + R2I(s)
2b(s) = R-12E(s) — R'2I(s) (16)

and, referring to Fig. 1, a=(aiasasa,)’ and b=(b1b:b3b,) .
The fundamental matrix solution to the system is now de-
fined as the 2X2 matrices,

e V(x, ) e1¥(z, s
E(x,s)z[l (%, 8) e1®( )]

62(1)(I, S) 62(2)(93, 8)

1@ (x, 8) 1Pz, s
e = D] a7)

D (x, 8) . (z, s)
in which the corresponding columns are independent vector
solutions of (10a) and (10b) satisfying the boundary condi-
tions, E(l, s)=R,'? and I(/, s)= R,~*/2. The dependence of
the solution on the frequency variable s is now explicitly
indicated. Clearly we can write

AE@S) _ oy, ) (182)
dz

dl(z, s) 2 @B, 5. (1)
dz

Associated with the two vector solutions are the 4 X2 param-
eter matrices,

_al(l) 0/1(2)-

(19)
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Evidently,
B. A,
— | =8 ———1, (20)
By Ag
where, for a matched directional coupler,
0 Su ES“ 0
Sis 0 % 0 Saa
S=| ———|———
Sa 010 S
0 824 }834 0
L | .
Ser | Sup
- —~~%———. (21)
| e} S ]

The partitioning indicated in (21) allows us to treat the four-
port coupler as a two-port network. This expedient is useful
as long as the partitioned matrices are nonsingular, which
is guaranteed by our choice of the fundamental matrix
solution. From these equations it follows that

24, = R12E(0, s) + RA21(0, 5) (222)
2B, = R12E(0, §) — Ry (0, s) (22b)
245 = Ry YE(l, s) — Ro'2I(l, s) (22¢)
9Bs = Ri2E(l, s) + RAI(, 9). (22d)

Inserting the boundary conditions in (22¢) and (22d) we
find that 4;=0 and Bs;=1I. It follows from (20) through
(22b) that

E0, s) = RiM*(Aa + Ba) = B2 + Saa)Sset  (23)
and
I(Oy S) = 1_1/2(Aa - Ba) = 1‘112(.[ h Saa>Sﬂa_1- (24)

A basic premise in transmission-line theory is the
uniqueness of voltage and current. Mathematically, this
property can be derived by expressing (182) and (18b) in
the form of a matrix Volterra integral equation. In this way
it can be shown that E(x, s) and I(x, s) are continuous func-
tions of x for all s and that either function is uniquely deter-
mined by the values of E and 7 at one point, say x=1I. This
property is subject only to the condition that Z,(x) be
integrable. In the practical situation where the elements of
Z((x) are sectionally continuous this requirement is cer-
tainly satisfied. A second property which can be deduced from
the integral representation is that E(x, s) and I(x, s) are
entire functions of s for all x, 0<x</. We now wish to ex-
amine the implications of uniqueness on the terminal im-
pedances of the coupler. Consider (18a) when s=0. The
solution is E(x, 0)=C, where C is a constant 2X2 matrix.
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But from the boundary conditions for the fundamental
solution, C= Ry, and it is concluded that E(0, 0)=R,!/2
and 1(0, 0)=R,;~/2. Subtracting (24) from (23) and employ-
ing (21) we obtain for s=0,
R1—1/2R21/2 — R11/2R2—1/2 —_ ()Saa(O)Sﬂa_l(O)
2812(0)
S24(0
- w01 o5)
28512(0)

S15(0)

Since R, and R, are diagonal, it follows that R;=R,. In
other words, to be a directional coupler the lines must be
loaded in a symmetric fashion so that »,=»; and ro=r,. It
also follows from (25) that S1%0)=0 and from (23), Si3(0)
=S55(0)=1.

ANALYSIS

In view of the above constraint on the terminal imped-

ances, the following transformation is suggested:
E(x, s) = R~\2E(, s)

I(z, s) = R (x, s) - (26)

Substituting (26) in (18a) and (18b), the matrix line equa-
tions become

dE(z, s) .
= — sRo(x)I(z, 5) (27a)
dx
dl(z, s) -
= — sRy Y (z)E(z, s), (27b)
dx
where
Ro = R1_1/2Z0(x)R1_”2 . (28)

It will now be assumed that the coupler possesses electrical
symmetry in the sense that Si;=S.. The boundary condi-
tions for the normalized voltage and current at x=0 and
x=1 can then be written,

E(O 9 = I: 1/813 S12/S13i|

7 [81/8 1/81s
. B 1/S1s —8S12/813
Im”)_[—smww u&a] (29)

and E(I, s)=1(l, s)=1I. The “double symmetry” displayed in
the boundary conditions plays a key role in the following
analysis. We shall consider the class of solutions of (27a)
and (27b) which are doubly symmetric for all x in the inter-
val 0< x</; that is, solutions for which &,®(x, s)=&€,?(x, s)
and é,V(x, s)=¢&,9(x, s), and similarly for the components
of the current matrix. The existence of such solutions will be
shown to follow from the existence of the solutions for two
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single-line problems. Under this assumption it is concluded
from (27a) that R¢(x) must also be doubly symmetric for
all x. That is, Ry(x) has the form,

R11(.’l§) Rm(aﬁ):l
Ru(x) Ru(x) '

Adding and subtracting columns of (27a) and (27b) gives

Ro(@) = [ (30)

d
R CRICDEZ I

= — S[Ru(m) + R12(9C)][731(1)(90, 8) + 1. ®(z, S)] (31a)
d
— [V (z, 5) + 1D, 5)]
dx

= — S[Gn(x) + Gm(x)][él(l)(x, s) + é1(2)(xy 3)]; (Slb)

where G1i(x) and Gyx(x) are the corresponding elements of
Go(x)= Ry (x). Thus this procedure, which is analogous to
the familiar even- and odd-mode analysis of physically sym-
metric microwave structures, has resulted in the separation
of the matrix transmission-line equations into two scalar
equations. Stated in other terms, the condition of double
symmetry makes it possible to diagonalize simultaneously
both (27a) and (27b) with a constant, orthogonal matrix.
After making the definitions, E*(x, s)=&,P(x, s)£ &2 (x, ),
IE(x, )=1,(x, 5) + 1:@(x, 5), and R*(x)= Ryi(x)+ Rys(x) and
noting that

GE(z) = Gu@) + Gulr) = 1/R*(w), (32)
(31a) and (31b) become
dE*(z, s)
—— = — sRE(x)[*(z, s) (33a)
dx
di=
——(ﬁ’—jz = — s1/R*(x)E*(x, s). (33b)
dx
The boundary conditions for these normalized equations are
1+8
B0, 5) = 202,
S13(s)
1 $ 812(8)
I70,s) = —— (34a)
( S13(8)
Ex(l,s) =I#(1, s) = 1. (34b)

It is evident that (33) and (34) describe two nonuniform lines
each terminated in one ohm and possessing the scattering
parameters S1i¥(s)= £ S1o(s) and S12*(s) = S1:(s) normalized
to one ohm. From (28) and the fact that Z,(x) is positive
definite it follows that Ry;> | Ry2|. Consequently, R(x)>0,
0<x<1, and the sum and difference lines are always realiz-
able. This completes the proof of the conjecture made in the
Introduction.

It will now be shown that the sum and difference trans-
mission-line problems are not independent; in fact, one line
is the dual of the other. The proof of this statement follows
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from the uniqueness of the synthesis problem for nonuni-
form lines. The question of uniqueness and general realiz-
ability for continuously nonuniform lines has only recently
begun to receive attention. Wohlers [8] has shown that for
lossless lines possessing a local characteristic impedance R(x)
that is twice continuously differentiable, the reflection coeffi-
cient Sy(s) uniquely determines R(x). Heim and Sharpe [9]
have obtained the same result under the more general condi-
tion that R(x) be only absolutely continuous. The unique-
ness of the synthesis problem for general discontinuous lines
has yet to be proved, although there are strong heuristic
reasons for assuming that the realizability of Sii(s) always
guarantees the uniqueness of R(x). In the familiar case of
stepped, uniform lines of equal length it is evident from the
method of extracting sections that the synthesis problem has
a unique solution [10].2 It is also known that S1:(s) uniquely
determines the other elements of the scattering matrix if R
is absolutely, sectionally continuous? and / is known. This
implies that either F(0, s) or I(0, s) is sufficient to prescribe
the synthesis of a lossless line terminated in a real impedance.

Assume that the synthesis problem for the sum and differ-
ence lines associated with (33) has a unique solution. That is,
given a realizable EH0, s), R*(x) is uniquely determined
and similarly for £-(0, s) and R~(x). But from (34a) E*(0, s)
=TI%(0, 5). It follows thatt

R*(x) = 1/R~(x), (35)

Furthermore, the voltage on the sum line is equal to the
current on the difference line, and vice versa, for every x.
Thus, the two lines are complete duals. Since R*(x) cor-
responds to the “even-mode impedance” Z,,, and R~(x) to
the “odd-mode impedance” Zo, (35) is a generalization of
the well-known condition, Z,,Z= 1, which is necessary for
the equivalence of stepped lines and stepped directional
couplers.

It has been shown that the realizability of a symmetric
coupler guarantees the realizability of the sum and differ-
ence lines. Unfortunately, the converse is not true. This
state of affairs results from the fact that the positive definite
character of C(x) is not sufficient to guarantee at each value
of x the existence of a uniform multiconductor line having
the capacitance matrix C(x). It is known that a necessary con-
dition for realizability is that C(x) be hyperdominant [6].
That is, the elements of C(x) must satisfy for all x, 0<x</,

0<2<L1l

Zg: Ciy(z) 20,

g1

i=1,2 (36)

and

Cm(l?) = 021(33) S 0. (37)

* This statement of uniqueness does not conflict with the multiplicity
of solutions to the synthesis problem when the insertion loss rather
than S1,(s) is specified [11].

3 R(x) is absolutely continuous except for a finite number of dis-
continuities.

* Added in proof: The sufficiency of this condition for physically
symmetric directional couplers has recently been established by S.
Yamamoto, T. Azakami, and K. Itakura, (“Coupled nonuniform trans-
mission line and its applications,” IEEE Trans. Microwave Theory and
Technigues, vol. MTT-15, pp. 220-231, April 1967).
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These conditions cannot be inferred from the positive definite
character of C(x). Since (36) and (37) imply that C(x) is
positive semidefinite, however, it is possible that the hyper-
dominant restriction is sufficient as well as necessary, al-
though to the author’s knowledge this has not been proved.
In any event (36) and (37) do impose restrictions on the
characteristic impedance of the sum and difference lines
which may complicate the synthesis problem when unequal
terminating impedances are specified.

In order to determine these restrictions it will be con-
venient to deal with the characteristic admittance Yo(x)
=Z;%(x) and terminating conductances, g;=1/r,, and

g2=1/rs. From (12) and (28),
1 I:\/a 0 } |:G11 G121| [\/51_ 0 :|
v@) L 0 g d LGw Gu 0 Vg
_ 1 [QhGu V9192 Gm]
v(:v) \/512]—2 Gz ngu )

Condition (36) in conjunction with (32) and (35) leads to the
right-hand inequality of

1> @ @) > 4/ ‘ﬁ_f—_*/g—i
\/91 +\/gz

while (37) leads to the left-hand inequality. In summary, a
symmetric transmission-line directional coupler is realiz-
able only if the corresponding characteristic admittance
GH(x) of the equivalent line satisfies (39) for all x.

Clx) =

(38)

(39)

UNEQUAL TERMINATING IMPEDANCES

In order to investigate the role of the impedance trans-
formation given in (26) consider the familiar single-section
stepped coupler with line (1) terminated at ports 1 and 3 in
a conductance gy, and line (2) terminated at ports 2 and 4
in a conductance g,. This example will also bring out the
importance of the uniqueness property. The appropriate sum
and difference problems are depicted in Fig. 2. The reflection
coefficients Sy;* are readily found from the solutions to (33a)
and (33b). The result is

St — 48 — Jk* sin wl 40)
H TR - (k%)2 cos wl + 7 sin wl
where
)2 _
o B 1 an
(R*)? + 1

A unique solution for S;. will be obtained only if k—= —k™*.
It follows that

R*R- = G*G- = 1 42)
and

R*— R G —G*
TR LR G+ G

-}

(43)
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re| | re}
| ————
___.Sli‘z
S «——
B | —
ey —

Fig. 2. Equivalent lines for a single-section directional coupler.

It remains to relate these parameters to the familiar even-
and odd-mode characteristic admittances. Using Cristal’s
notation [12] the characteristic admittance matrix will be
written
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leaves this ultimate bandwidth open to question. A mwore
recognizable advantage seems to lie in the use of continuous
nonuniform couplers to eliminate (in a quasi-TEM sense)
reactive discontinuities altogether, thus removing a major
deterrent to the achievement of high directivity.

It is often convenient to specify the properties of direc-
tional couplers in terms of the power division factor

_[Sul?

W—T*S—ls‘l;' (46)

It can be shown that in the case of stepped couplers 7 is an
even polynomial in cos wl, where / is the normalized length
of each section [3]. In the continuous case this parameter

Yoo, + Yoo, Yoo — Yoo, : . : -
5 can be readily approximated using techniques developed for
Y, = 2 the analysis of single nonuniform lines. In order to ac-
Yoo, — Yoo, Yoo, + Yoo, commodate possible discontinuities in R*(x) at x=0 and
9 2 x=1, we will employ the formulation given by Youla [14].
- 4 D Noting the boundary conditions given in (34) for the equiva-
= - ] (44) lent transmission-line problem, we obtain for the first-order
L—D B approximation,
I
S12(jw) K(Tee2! — T) + f [e-278 — T.Tpe—2ie =D P(§)d&
Y o ot ° , @7)
S13(jw) 1+ T9(1 — Ty
From (28) where
d
A —D/Vg:9: P(§) = 1/2 —In R*(¥) (48a)
Go= Rt = [ D/ “il/__ B/ Vo 192} (45) d
- / g1g2 /92 1 — R+(0)
1=
Gy, and hence R,, will be doubly symmetric only if 4/g; 1+ RBH(0)
= B/g,, which is Cristal’s matching condition. Equations 1 — R+
(32) and (42) lead to 4B— D*=g.g, which is Cristal’s con- 2 = 118 (48b)
dition for infinite directivity. Also, from (43), the coupling
coefficient is k+= D/~/AB. Other formulas giving g, and g, 204
in terms of the components of the L and C matrices have K =1 — In vRTQ)/R¥0). (48¢)

been given elsewhere [13] and will not be repeated here. It
is clear from the example that the so-called nonsymmetric
coupler is not basically different from the more common
coupler for which gi=g,. What is important is that the
coupler possess electrical symmetry as defined previously in
terms of the scattering parameters. Finally, it should be
noted that if Sy(s) or G*(x) is given, the terminating con-
ductances g, and g» cannot be chosen arbitrarily.

ANALYSIS OF NONUNIFORM DIRECTIONAL COUPLERS

The principle advantage offered by continuously tapered
couplers lies in the possibility of obtaining extremely wide
coupling bandwidths. This contrasts with the periodic cou-
pling characteristic of stepped directional couplers having
equal-length sections. Theoretically, the coupling bandwidth
will be infinite if R+(x) can be made discontinuous. However,
the practical difficulty of realizing such a step in impedance

As an illustration in the application of this expression it
will be instructive to consider the tapered-line magic T [15].
For reasons of simplicity we will assume that R*(x) and
R~(x) have an exponential taper in the nonuniform region
rather than the Chebychev taper originally employed. The
variation of Ri(x) is depicted by the solid line in Fig. 3.
Even though the output terminals are located at x=2/,
better accuracy will be obtained if (47) is applied only to
the nonuniform section, 0<x</, and a correction for the
phase shift introduced by the uniform section is made after-
ward. Setting x=1/Rt([)=e%¢! and noting that I';=0 and
Te=(x—1)/(x+1), we find that

Slz(jw) NK + 1
S13(jw) = 2k l:(l

(49)



404

+
Rix)= ezux

x
"
™~
\
A
><
(i
n
©

N\

~
AN

Xt\

Fig. 3. Impedance variation of the equivalent line for a tapered-line

magic T.
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Fig. 4. Amplitude and phase variation of the power division factor
for a tapered-line magic 7.

This result, while reasonably accurate at intermediate fre-
quencies, is not correct at either w=0 or w= «. The correct
asymptotic behavior at infinity, as given by DuHamel and
Armstrong, [15] can be obtained by making the substitu-
tions, a/=~(1—«x)/(14+x) and 1—al=+/;. This can be justi-
fied when o/, since these approximations are of the
same order as the approximations inherent in the derivation
of (47). The final result is
k—1
=11
2k l:

S1a(jew)

S13(jw)
The magnitude and phase of this expression are plotted in
Fig. 4 versus f=wl/ for the case where x=0.818, correspond-
ing to a 20 dB asymptotic coupling coefficient. Equation
(47) provides a convenient formula for evaluating other
tapers for directional couplers. For example, it can be shown
by employing a double taper such as that suggested by the
dotted line in Fig. 3, that the variation of the phase ¥(w) can
be substantially reduced. Unfortunately, because this char-
acteristic violates (39), it does not lead to a realizable trans-
mission-line coupler.’ As in the case of stepped couplers, ¥
can be made to approximate 90 degrees by employing an
R¥(x) characteristic which is symmetric about x=/ instead

= /7 e =

el sin wZ:I (50)
\/; wl ’

s This type of coupler was first discussed by Oliver [4]. He observed
that it could be realized by transposing conductors, an operation which
is ruled out in the present theory.
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of antisymmetric as in the previous case. However, infinite
coupling bandwidth is then no longer possible since, in the
absence of a discontinuity in R¥(x), n approaches zero for
large frequencies. In spite of this restriction Tresselt [5] has
recently reported obtaining a 7 to 1 bandwidth with such a
design.

CONCLUSION

The important implication of the equivalence principle
presented here is that whenever an exact solution to the
analysis or synthesis problem for nonuniform transmission
lines can be found, an exact solution to the corresponding
directional coupler problem is also available, subject to the
realizability conditions stated earlier. Thus, nonuniform
directional couplers can be designed without necessarily
making the usual assumption that the coupling is small or
that the lines are only slightly nonuniform. Although there
is little in the literature on exact methods of nonuniform
transmission-line synthesis, there is increasing interest in
the subject and hopeful signs that important advances will
soon be forthcoming. In what may be the first practical
solution to this problem, Heim [16] has recently devised an
exact technique for constructing the characteristic impedance
of a class of absolutely continuous lines. However, much
work remains to be done, particularly on the approxima-
tion problem and on the realizability problem encountered
here where the characteristic impedance is bounded from
above and below.

APPENDIX

In this section a proof will be given for the following
theorem: A matched, transmission-line directional coupler
having an absolutely continuous characteristic impedance
matrix must be symmetric; that is, Si(s)=Su(s). It is
understood that the two lines making up the coupler are of
equal length.

It can be shown from the properties of the solution that
S13(s) and Sz(s) are meromorphic functions of s and analytic
in the half plane, ¢>0. Therefore, Si5/S2 is also a mero-
morphic function, and we can write in general,

Su(s _ Fs)
Sols)  G(s)

(51)

where F(s) and G(s) are entire functions of s. The phase law,

S13(s)S1s(—35) = S2s(8)S24(—s), (52)
which can be deduced from (2), implies that G(s) and F(—s)
have the same zeros. It follows from Hadamard’s factoriza-
tion theorem [17] that

Sauls) = Suale) L7

ef (s), (53)
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where f(s) is a polynomial of finite degree. We have seen
that in order for a matched directional coupler to exhibit
perfect directivity at all frequencies it is necessary that S13(0)
= S»(0)=1. From this condition we conclude that f(0)=0.
It will now be shown that F(s) can have no zeros. From (23)

and (24),
Sﬁa_l = [I/SB 0 ]
0 1/854

= 3[R12E(0, ) + Ry1(0, 5)]

= 3[£0, 5) + 10, 9)]- (54)
Since the right side is an entire function of s, neither Si;(s)
or Su(s) can be zero for any finite value of s. Referring to
(53) any zeros of F(—s) which are canceled by poles of Si(s)
produce poles of Sa(s) in the right half plane. Consequently,
F(s) can have no zeros, and .Sy; and Sy, differ at most by an
exponential factor.

It remains to evaluate the asymptotic behavior of Sis(s)
and Sy(s) as s— . In general the existence of a fundamental
solution satisfying £(l, s)=I(l, s)=1I does not permit us to
infer anything about the asymptotic behavior of £(x, s) and
I(x, s) at x=0. However, it can be shown by extending previ-
ous results for the single line [9] to the matrix case that if
the elements of Z(x) are absolutely continuous, then there
exists a fundamental solution to (27) such that for all x,
0<x<],

. —es(l~z) 0 7
E(x, s) — 0 et (55)
and
“ s (=) 0 7
UG IR (56)

uniformly as s— in the half plane, 0>0. Since the solu-
tion is unique, it follows from (54) that Si(s) and Su(s)
have the same asymptotic behavior and are, therefore, equal.
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