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An Equivalence Principle for Nonuniform

Transmission-Line Directional Couplers

CHARLES B. SHARPE,

Abstract-The analysis of transmission-line directional couplers is

formulated in terms of a pair of first-order matrix differential equations.

It is shown that for every nonuniform directional coupler that is electrically

symmetric, there exists an equivalent pair of dual nonuniform transmis-

sion lines. It is also shown that a matched, transmission-line directional

coupler having an absolutely continuous characteristic impedance matrix

must be symmetric. Restrictions on the terminating impedances and the

implications of these restrictions on the realizability of transmission-line

couplers are investigated. Finally, the tapered-line magic 2’ is treated as

an example.

INTRODUCTION

T
HE EQUIVALENCE between stepped, transmission-

line directional couplers and stepped, transmission-

line filters is well known and has been established

analytically by several authors [1], [2]. These couplers,

which consist of sections of equal-length uniform line, are

usually assumed to be matched at each port and to have

perfect directivity at all frequencies. The equivalence states

that for such structures a two-port transmission-line network

can be found which yields as a solution the desired param-

eters or characteristics of the four-port coupler. The prin-

cipal purpose of this paper is to show that this equiva-

lence holds for a general class of symmetric, nonuniform

directional couplers which includes the stepped coupler as

a special case.

It should be said that the existence of such an equivalence

is implicit in the work of previous authors [3]–[5]. However,

a rigorous justification for its application has not been given.

While this may appear unnecessary from a practical point

of view, it will be shown that such an approach does lead

to some explicit results regarding the realizability of trans-

mission-line directional couplers. Moreover, an analytical

treatment of equivalence will provide a basis for the intro-

duction to the coupled-line problem of synthesis techniques

recently developed for single, nonuniform lines.

The fact that such an equivalence is possible is suggested

by considering the scattering matrix of the general contra-

directional coupler depicted in Fig. 1,
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Fig. 1. A four-port transmission-line coupler.

where s= a+ju denotes the complex frequency variable. It

is well known that for any Iossless linear network, S(s) must

be unitary. That is, on the real frequency axis, Y(@)S@)=l,

where the prime denotes the transpose, the bar the complex

conjugate, and 1 the 4X 4 unit matrix. This relation is a

special case of the para-unitary condition,

S’(–s)s(s) = 1, (2)

which can be derived directly from the Wronskian of the

matrix differential equation describing the system.

In the following it will be assumed that the directional

coupler possesses side-by-side electrical symmetry, that is,

SIS(S)= S24(s).1In the Appendix it is shown that one has very

little freedom in choosing S’10and S,, independently. In fact,

for the class of absolutely continuous coupled lines of equal

length S’13must equal S.21.For directional couplers which are

symmetric in this sense (2) reduces to three independent

equations that can be combined into

[s+(–s)]’s+(s) = 1, (3)

where the reduced 2X 2 matrices are defined by

[

*S12(S)
s+(s) =

s,,(s)

1S13(S) +s34(s) “

(4)

In (3) and hereafter 1 will be used to denote the 2X 2 unit

matrix. Equation (4) suggests that there exist two single

transmission lines having as their reflection coefficients S12

and —S12, respectively, and having Sla as their transmission

coefficient. It will be shown that this conjecture is true for

the class of nonuniform couplers considered.

I This definition of symmetry does not necessarily imply physical
symmetry of any kind.
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THE MATRIX LINE EQUATIONS

It will be obvious that the discussion of this section ap-

plies equally well to n coupled lines. However, nothing is

gained by the added generality, and in the interest of sim-

plicity the discussion will be limited to the case where n= 2.

Denote by the column matrices,

[1
cl(z)

e(z) =
e2(z)

[1ii(z)
i(2) =

L(2)
(5)

the voltages and currents, respectively, on the two lines

depicted in Fig. 1. The coupled, nonuniform line equations

for the lossless case can then be written

de(z)

dz =
– SL (z)i(e)

di(z)
.sC(.z)e(z),

dz=–

(6a)

(6b)

where L(z) and C(z) are real, symmetric 2X 2 matrices. It

will be assumed that the elements of L and C are bounded

and integrable functions of z and at each point on the line

satisfy conditions consistent with TEM-mode propagation.

Thus, from energy considerations both L and C must be

positive semidefinite for every z. For reasons which will be

apparent shortly it will be assumed that L and C are actually

positive definite.

In the case of uniformly coupled, parallel conductors in

a homogeneous media the inductance and capacitance ma-

trices in (6a) and (6b) are, of course, independent of z.

Moreover, it is known [6] that LC= CL= ptl. It is easily

shown from Maxwell’s equations that this relation as well
as (6a) and (6b) still hold when the media is inhomogeneous

in the z direction, that is, when ~ = ~(z) and c= e(z). It makes

sense to assume, therefore, that in the general nonuniform

case in which the cross section of the structure may also vary

with z that there still exists a positive function v(z) such that

1
L(.z)C(Z) = C(Z)L(Z) = — 1.

V2(2)
(7)

This condition is consistent with the TEM assumption

since it implies that at each point z the propagation on both
lines is characterized by the same “local” velocity, v(z).

While (7) is difficult to justify in the case where the propa-

gating field is not strictly TEM, it will now be shown that

this assumption does lead to the definition of a unique

“local” characteristic impedance matrix which reduces to

the conventional result for the case of uniform coupled lines.

Thus, at each point on the nonuniform structure it is pos-

sible to associate a system of coupled, uniform lines having

the same inductance and capacitance matrices at that point.

As in the case of single lines it would be expected that the

error made in this type of approximation would be accept-

able for coupled lines having only a moderate degree of non-

uniformity.

Introduce the new variable

s‘ dl
2(2) = — .

() v (g)
(8)

Noting that z is determined uniquely in terms of x by this

relation, we will express the spatial dependence of the vari-

ous functions as follows: e [z(x)]= e(x), L[z(x)] = L(x), etc.

Then,

de(z) de[z(x) ] dx de(x) 1

dz = dx dz=clx ~“
(9)

Since every positive definite matrix has an inverse and a

unique positive definite square root, (7) and (9) and a similar

equation in i(x) can be used to put (6a) and (6b) in the

symmetric form,

de(x)

dx =
– sZO(x)i(z)

di(x)

dx ‘–
SZO–l(X) e(z),

(lOa)

(lOb)

where the characteristic impedance matrix is defined by

Zo(z) = C(x)–1/2L(x)1/2. (11)

From the assumed properties of L(x) and C(x) it can be

shown that ZO(X) is symmetric and positive definite. The

proof follows from the well-known result that if two sym-

metric matrices commute they can be diagonalized by the

same orthogonal matrix [7]. It is evident from (7) that (11)

can also be written

z,(x) = —1 c-l(x),
v (x)

(12)

so that, given v(x), there is a one-to-one correspondence be-

tween ZO(X) and C(x). The question of whether or not a

particular C(x) can be physically realized in the quasi TEM

sense previously discussed will be deferred until later.

PROPERTIES OF TRANSMISSION-LINE DIRECTIONAL COUPLERS

The scattering matrix formulation is often the most con-

venient one to use when discussing directional couplers. This

is particularly true of transmission-line couplers if the

scattering matrix is partitioned so as to distinguish between

input and output ports. No assumption will be made in this

section regarding symmetry. It will be assumed initially

that the ith port of the coupler is terminated in a uniform,

Iossless line of characteristic impedance ri> O. Therefore,

the scattering matrix is appropriately normalized with re-

spect to the real characteristic impedance matrix,

r 1 1

rl OiO O

[,1

R,!O
R= :–r+:-: = —K—:—R2— . (13)

o 0!0 7-4

L I J
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If we define the column matrices,

rel(o, s)7

He2(0, s)
E(s) =

q(l, s)

e2(l, s)

r il(o, s)7

‘iZ(o, s)
I

I(s) = ~
—il(l, s)

d —iz(l, s)

(14)

then the scattering matrix S’(,s) satisfies

b = S’s, (15)

where

2a(s) = R-’/2E(s) + R’/’I(s)

2b(s) = R-1/2E(s) – h?l/2~(S) (16)

and, referring to Fig. 1, a= (alazasal)’ and b = (blbzb@’.

The fundamental matrix solution to the system is now de-

fined as the 2X2 matrices,

E(x, S) =

[

el(l)(x, s) elfz)(z, s)

e2(1)(q s) ez(z)(z, s) 1
[

‘ii(l) (x, s) il(’)(q s)

~(% s) = ~2(1) (*, ,s) i2@)(q s) 1 (17)

in which the corresponding columns are independent vector

solutions of (lOa) and (lOb) satisfying the boundary condi-

tions, E(l, s)= RJ/2 and 1(1, s)= R#/2. The dependence of

the solution on the frequency variable s is now explicitly

indicated. Clearly we can write

dE(x, S)

dx ‘–
SZO(X)I(X, s) (18a)

dI(x, S)
– — SZO–l(Z)E(Z, S).

dx –
(18b)

Associated with the two vector solutions are the 4X2 param-

eter matrices,

A.

[1A~ =

Be

[1———
Bfl =

al(l) al(z)

~2(1) fJ2 (2)

————.

~8(1) ~3(2)

~4(1) ~4(2)

~1(1) /4(2)

~,(l) ~2(2)

b3(U b3(’)

b4(1) b4(2)

(19)

Evidently,

r-1=fir-1
LB, J l_Abl

where, for a matched directional coupler,

[
o

I
S,2 @ o

I s,, OiO 824 I

(20)

1
s= ––––/––––

S13 010 834

1

0 824 ~834 O
1

~,1

s / S.fiaa

—— ———~——_ . (21)

s@ [ A$qo
J

The partitioning indicated in (21) allows us to treat the four-

port coupler as a two-port network. This expedient is useful

as long as the partitioned matrices are nonsingular, which

is guaranteed by our choice of the fundamental matrix

solution, From these equations it follows that

2A. = R,-1/2E(0, S) + R,l/21(0, s) (22a)

2Ba = R1-1/2E(0, S) – R,’/21(O, S) (22b)

2A@ = R,-1/2E(l, S) – R,’/2I(l, S) (22C)

2B@ = R2-’12E(1, S) + R21121(1, S). (22d)

Inserting the boundary conditions in (22c) and (22d) we

find that Ap= O and B@=1. It follows from (20) through

(22b) that

E(O, S) = R,l/2(A. + Ba) = R1’12(1 + SmJ!Yda-l (23)

and

1(0, S) = R1–’/2(A. – BJ = RI-112(I – SJS/q-l. (24)

A basic premise in transmission-line theory is the

uniqueness of voltage and current. Mathematically, this

property can be derived by expressing (18a) and (18b) in

the form of a matrix Volterra integral equation. In this way

it can be shown that E(x, s) and I(x, s) are continuous func-

tions of x for all s and that either function is uniquely deter-

mined by the values of E and I at one point, say x=1. This

property is subject only to the condition that Zo(x) be

integrable. In the practical situation where the elements of

Zo(x) are sectionally continuous this requirement is cer-

tainly satisfied. A second property which can be deduced from

the integral representation is that E(x, s) and 1(x, s) are

entire functions ofs for all x, O< x <1. we now wish to ex-

amine the implications of uniqueness on the terminal im-

pedances of the coupler. Consider (18a) when s= O. The

solution is E(x, O)= C, where C is a constant 2X 2 matrix.
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But from the boundary conditions for the fundamental

solution, C= RJ12, and it is concluded that E(O, O)= R.$@
and 1(0, O)= Ra–l 12.Subtracting (24) from (23) and employ-

ing (21) we obtain for s= O,

R,-’I’R2’12 – R,l[’R,-ll’ = 2SaJO)S~a-1(0)

2s12(0)

[1
o—

s,,(o)
——

2s,,(0) o
. (25)

s,,(o)

Since R, and R, are diagonal, it follows that Rl= Ra. In

other words, to be a directional coupler the lines must be

loaded in a symmetric fashion so that r,= r~ and r,= r,. It
also follows from (25) that SL(0) = O and from (23), LS13(0)

= S24(0)= 1.

ANALYSIS

In view of the above constraint on the terminal imped-

ances, the following transformation is suggested:

fi(x, s) = R-’/2E(x, s)

f(z, s) = R,l/21(z, S) . (26)

Substituting (26) in (18a) and (18 b), the matrix line equa-

tions become

(27a)
dfi(x, S)

– — sRo(~)i(z, s)
dx –

df(x, S)

sRO–l(z)&r, S),

dx ‘–
(27b)

where

RO = &-1/2ZO(X)RI-1/2 . (28)

It will now be assumed that the coupler possesses electrical

symmetry in the sense that S13= Sth. The boundary condi-

tions for the normalized voltage and current at x= O and

x=1 can then be written,

[

1/s13 s12/s13

I?(O, s) =

s12/s18 1/s13 1

[

1/s13 –s12/s13
1(0, s) =

–s12/s13 1/s13 1 (29)

and .@l, s)= ~(1, s)= 1. The “double symmetry” displayed in

the boundary conditions plays a key role in the following

analysis. We shall consider the class of solutions of (27a)

and (27b) which are doubly symmetric for all x in the inter-

val O< x< 1; that is, solutions for which 21(1)(x, s)= L?Z(2)(X,s)

and ~2(1)(x, s)= ~l(z)(x, s), and similarly for the components

of the current matrix. The existence of such solutions will be

shown to follow from the existence of the solutions for two

single-line problems. Under this assumption it is concluded

from (27a) that Ro(x) must also be doubly symmetric for

all x. That is, Ro(x) has the form,

[

Rn(~) R12(x)
Ro(x) = 1R12(z) &(x) “

(30)

Adding and subtracting columns of (27a) and (27b) gives

—_— s[RH(x) + R1z(x)]~l(lJ(x, .s) t tlf2J(x, s)] (31a)

where Gil(x) and Glz(x) are the corresponding elements of

Go(x) = RO–l(X). Thus this procedure, which is analogous to

the familiar even- and odd-mode analysis of physically sym-

metric microwave structures, has resulted in the separation

of the matrix transmission-line equations into two scalar

equations. Stated in other terms, the condition of double

symmetry makes it possible to diagonalize simultaneously

both (27a) and (27b) with a constant, orthogonal matrix.

After making the definitions, E+(x, s) = E?I(’)(x, s) ~ dl[’~(x, s),
1*(x,s) = tluj(x, S)+ fl@J(x, s), and I&(x) = Ru(x)+ Ru(x) and

noting that

G*(x) = (i’,,(x) + &,(x) = l/R*(z), (32)

(31a) and (31b) become

(33a)

dl* (X, S) =

dx
— sl/R*(x)E*(z, S). (33b)

The boundary conditions for these normalized equations are

1 fsn(s)
E+(O, S) =

SI,(s)

1 T S,2(S)

1+(0, s) =

s,,(s)

(34a)

E+(Z, s) = 1*(1,s) = 1. (34b)

It is evident that (33) and (34) describe two nonuniform lines

each terminated in one ohm and possessing the scattering

parameters S#@) = ~ S,,(s) and S&(s)= S1S(S)normalized

to one ohm. From (28) and the fact that ZO(X) is positive

definite it follows that R,,> IR,,l . Consequently, R+(x)> O,
0< x< 1, and the sum and difference lines are always realiz-

able. This completes the proof of the conjecture made in the

Introduction.

It will now be shown that the sum and difference trans-

mission-line problems are not independent; in fact, one line

is the dual of the other. The proof of this statement follows
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from the uniqueness of the synthesis problem for nonuni-

form lines. The question of uniqueness and general realiz-

ability for continuously nonuniform lines has only recently

begun to receive attention. Wohlers [8] has shown that for

lossless lines possessing a local characteristic impedance R(x)

that is twice continuously differentiable, the reflection coeffi-

cient &l(.s) uniquely determines R(x). Heim and Sharpe [9]

have obtained the same result under the more general condi-

tion that R(x) be only absolutely continuous. The unique-

ness of the synthesis problem for general discontinuous lines

has yet to be proved, although there are strong heuristic

reasons for assuming that the realizability of S11(.s)always

guarantees the uniqueness of R(x). In the familiar case of

stepped, uniform lines of equal length it is evident from the

method of extracting sections that the synthesis problem has

a unique solution [10].2 It is also known that S11(s) uniquely

determines the other elements of the scattering matrix if R
is absolutely, sectionally continuous and 1 is known. This

implies that either E(O, s) or 1(0, s) is sufficient to prescribe

the synthesis of a lossless line terminated in a real impedance.

Assume that the synthesis problem for the sum and differ-

ence lines associated with (33) has a unique solution. That is,

given a realizable E+(O, s), R+(x) is uniquely determined

and similarly for E–(O, s) and R–(x). But from (34a) E+(O, s)

=1+(0, s). It follows that4

R+(z) = l/li-(x) , O<x <l. (35)

Furthermore, the voltage on the sum line is equal to the

current on the difference line, and vice versa, for every x.

Thus, the two lines are complete duals. Since R+(x) cor-

responds to the “even-mode impedance” 2.,, and R–(.x) to

the “odd-mode impedance” 200, (35) is a generalization of

the well-known condition, 20,200= 1, which is necessary for

the equivalence of stepped lines and stepped directional

couplers.

It has been shown that the realizability of a symmetric

coupler guarantees the realizability of the sum and differ-

ence lines. Unfortunately, the converse is not true. This

state of affairs results from the fact that the positive definite
character of C(x) is not sufficient to guarantee at each value

of x the existence of a uniform multiconductor line having

the capacitance matrix C(x). It is known that a necessary con-

dition for realizability is that C(x) be hyperdominant [6].

That is, the elements of C(x) must satisfy for all x, 0< x< 1,

~ c,,(z) 20, 2 =1,2 (36)
j= 1

and

C,,(v) = c,,(z) <0. (37)

z This statement of uniqueness does not conflict with the multiplicity
of solutions to the synthesis problem when the insertion loss rather
than S,,(s) is specified [11].

3 R(x) is absolutely continuous except for a finite number of dis-
continuities.

4 Added in proof: The sufficiency of this condition for physically
symmetric directional couplers has recently been established by S.
Yamamoto, T. Azakami, and K. Itakura, (“Coupled nonuniform trans-
mission line and its applications,” IEEE Trans. Microwave Theory and

Techniques, vol. MTT-15, pp. 22@231, April 1967).

These conditions cannot be inferred from the positive definite

character of C(x). Since (36) and (37) imply that C(X) is

positive semidefinite, however, it is possible that the hyper-

dominant restriction is sufficient as well as necessary, al-

though to the author’s knowledge this has not been proved.

In any event (36) and (37) do impose restrictions on the

characteristic impedance of the sum and difference lines

which may complicate the synthesis problem when unequal

terminating impedances are specified.

In order to determine these restrictions it will be con-

venient to deal with the characteristic admittance Yo(x)

=ZO–l(X) and terminating conductance, gl= l/rl, and

gz= l/r,. From (12) and (28),

1

–[ -

glGn v’glgz 62
——

V(X) <glgz G12 1gJGll “
(38)

Condition (36) in conjunction with (32) and (35) leads to the

right-hand inequality of

.

while (37) leads to the left-hand inequality. In summary, a

symmetric transmission-line directional coupler is realiz-

able only if the corresponding characteristic admittance

G+(x) of the equivalent line satisfies (39) for all x.

UNEQUAL TERMINATING IMPEDANCES

In order to investigate the role of the impedance trans-

formation given in (26) consider the familiar single-section

stepped coupler with line (1) terminated at ports 1 and 3 in

a conductance gl, and line (2) terminated at ports 2 and 4

in a conductance gz. This example will also bring out the

importance of the uniqueness property. The appropriate sum

and difference problems are depicted in Fig. 2. The reflection

coefficients S1l* are readily found from the solutions to (33a)

and (33 b). The result is

S’11+ = +s12 =
jh@ sin al

<1 – (k+)’ cos W1+ j sin d
, (40)

(41 )..
(R’)’ + 1

,--,

A unique solution for S,, will be obtained only if k= – k+.

It follows that

R~R- = (Jh@- = ~ (42)

(43)
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*i leaves this ultimate bandwidth open to question. A more
r.1 I recognizable advantage seems to lie in the use of continuous

l— nonuniform couplers to eliminate (in a quasi-TEM sense)
—s;

s: — reactive discontinuities altogether, thus removing a major

I
deterrent to the achievement of high directivity.

+1+ It is often convenient to specify the properties of direc-

Fig. 2. Equivalent lines for a single-section directional coupler.
tional couplers in terms of the power division factor

Is,,l’
It remains to relate these parameters to the familiar even-

‘“= [fs,sl’ “
(46)

and odd-mode characteristic admittances. Using Cristal’s

notation [12] the characteristic admittance matrix will be It can be shown that in the case of stepped couplers ~ is an

written even polynomial in cos d, where 1 is the normalized length

““~!~~;~l
of each section [3]. In the continuous case this parameter

can be readily approximated using techniques developed for

the analysis of single nonuniform lines. In order to ac-

commodate possible discontinuities in R+(x) at x= O and

x=1, we will employ the formulation given by Youla [14].

Noting the boundary conditions given in (34) for the equiva-

‘[-: ‘3
(44) lent transmission-line problem, we obtain for the first-order

approximation,

K(I’2e-2@z – rl) + s,’[e-$!id–JS,,(jco)~~jat r,r,e-zjQ(z-:J]P(&)dg

AS’,&2.J)
~

(1 + r,)(l – r,)
(47)

From (28)

A/gl
——

[

– D/dglgz
G, = R,-l = —

– D/4gm 1B/g, “
(45)

GO, and hence R,, will be doubly symmetric only if A/gl

= B/gz, which is Cristal’s matching condition. Equations

(32) and (42) lead to AB–D2=gg’, which is Cristal’s con-

dition for infinite directivity. Also, from (43), the coupling

coefficient is k+= D/v’A-B. Other formulas giving gl and g’

in terms of the components of the L and C matrices have

been given elsewhere [13] and will not be repeated here. It

is clear from the example that the so-called nonsymmetric

coupler is not basically different from the more common

coupler for which gl = g2,. What is important is that the

coupler possess electrical symmetry as defined previously in

terms of the scattering parameters. Finally, it should be

noted that if S’Js) or G+(x) is given, the terminating con-

ductance gl and gz cannot be chosen arbitrarily.

ANALYSIS OF NONUNIFORM DIRECTIONAL COUPLERS

The principle advantage offered by continuously tapered

couplers lies in the possibility of obtaining extremely wide

coupling bandwidths. This contrasts with the periodic cou-

pling characteristic of stepped directional couplers having

equal-length sections. Theoretically, the coupling bandwidth

will be infinite if R+(x) can be made discontinuous. However,

the practical difficulty of realizing such a step in impedance

where

1 – R+(0)
rl =

1 + R+(0)

r, = 1 – R+(J)
1 + R+(l)

(48a)

(48b)

and

~ = 1 – in <R+(l)/R+~ (48c)

As an illustration in the application of this expression it

will be instructive to consider the tapered-line magic T [15].

For reasons of simplicity we will assume that R+(x) and

R–(x) have an exponential taper in the nonuniform region

rather than the Chebychev taper originally employed. The

variation of R+(x) is depicted by the solid line in Fig. 3.

Even though the output terminals are located at x=21,

better accuracy will be obtained if (47) is applied only to

the nonuniform section, O<x< 1, and a correction for the

phase shift introduced by the uniform section is made after-

ward. Setting K= l/R+(l)= e–’”z and noting that I’1 = O and

r2=(K– 1)/(K+l), we find that

&(jc.d) ~ K + 1

— –[(1-”’)(%)&&O) — 2K

sin ml

1+.1ei.1— m
cd

(49)
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Fig. 3. Impedance variation of the equivalent line for a tapered-line
magic T.
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This result, while reasonably accurate at intermediate fre-

quencies, is not correct at either w = O or OJ= ~. The correct

asymptotic behavior at infinity, as given by DuHamel and

Armstrong, [15] can be obtained by making the substitu-

tions, al~(l –IC)/(1 +K) and 1–al~~~ This can be justi-

fied when al<<l, since these approximations are of the

same order as the approximations inherent in the derivation

of (47). The final result is

The magnitude and phase of this expression are plotted in

Fig. 4 versus 0= ml for the case where K= 0.818, correspond-

ing to a 20 dB asymptotic coupling coefficient. Equation

(47) provides a convenient formula for evaluating other

tapers for directional couplers. For example, it can be shown

by employing a double taper such as that suggested by the

dotted line in Fig. 3, that the variation of the phase ~(u) can

be substantially reduced. Unfortunately, because this char-

acteristic violates (39), it does not lead to a realizable trans-

mission-line coupler.5 As in the case of stepped couplers, ~

can be made to approximate 90 degrees by employing an

.@(x) characteristic which is symmetric about x=1 instead

5 This type of coupler was fist discussed by Oliver [4]. He observed
that it could be realized by transposing conductors, an operation which
is ruled out in the present theory.

of antisymmetric as in the previous case. However, infinite

coupling bandwidth is then no longer possible since, in the

absence of a discontinuity in R+(x), q approaches zero for

large frequencies. In spite of this restriction Tresselt [5] has

recently reported obtaining a 7 to 1 bandwidth with such a

design.

CONCLUSION

The important implication of the equivalence principle

presented here is that whenever an exact solution to the

analysis or synthesis problem for nonuniform transmission

lines can be found, an exact solution to the corresponding

directional coupler problem is also available, subject to the

realizability conditions stated earlier. Thus, nonuniform

directional couplers can be designed without necessarily

making the usual assumption that the coupling is small or

that the lines are only slightly nonuniform. Although there

is little in the literature on exact methods of nonuniform

transmission-line synthesis, there is increasing interest in

the subject and hopeful signs that important advances will

soon be forthcoming. In what may be the first practical

solution to this problem, Heim [16] has recently devised an

exact technique for constructing the characteristic impedance

of a class of absolutely continuous lines. However, much

work remains to be done, particularly on the approxima-

tion problem and on the realizability problem encountered

here where the characteristic impedance is bounded from

above and below.

APPENDIX

In this section a proof will be given for the following

theorem: A matched, transmission-line directional coupler

having an absolutely continuous characteristic impedance

matrix must be symmetric; that is, SIJ(s) = S24(.S). It is

understood that the two lines making up the coupler are of

equal length.

It can be shown from the properties of the solution that

SIJ(S) and SZ4(S)are mesomorphic functions ofs and analytic

in the half plane, u> O. Therefore, S13/Sz4 is also a meso-

morphic function, and we can write in general,

S,,(s) F(s)

A%4(S) = G(s) ‘

(51)

where F(s) and G(s) are entire functions ofs. The phase law,

&3(S)&, (- S) = ~24(s)&4(-s), (52)

which can be deduced from (2), implies that G(s) and F’(-s)

have the same zeros. It folfows from Hadamard’s factoriza-

tion theorem [17] that

F(–s)
~24(s) = &3(s) —

ef (S),

F(s)
(53)
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where f(s) is a polynomial of finite degree. We have seen

that in order for a matched directional coupler to exhibit

perfect directivity at all frequencies it is necessary that &s(0)

= &,(0)=1. From this condition we conclude that f(0)= O.

It will now be shown that F(s) can have no zeros. From (23)

and (24),

[

fi# = li~ls o
0 1/s24 1

= +[a-’’z~(o s) + ~l’’z~(ol ~)1

= +[2(0,s) + f(o, s)]. (54)

Since the right side is an entire function ofs, neither S1,(s)

or ~24($) can be zero for any finite value ofs. Referring to

(53) any zeros of F’(-s) which are canceled by poles of S,,(s)

produce poles of&l(s) in the right half plane. Consequently,

F(s) can have no zeros, and SIS and SZ1differ at most by an

exponential factor.

It remains to evaluate the asymptotic behavior of S,,(s)

and S24(S)ass-~. In general the existence of a fundamental

solution satisfying -@j s)= 7(1, s)= 1 does not permit us to

infer anything about the asymptotic behavior of fi(x, s) and

7(x,s) at x= O. However, it can be shown by extending previ-

ous results for the single line [9] to the matrix case that if

the elements of ZO(X) are absolutely continuous, then there

exists a fundamental solution to (27) such that for all x,

O<x<l,

[

@(?-z) o
E(x, s) -+

o @( 2–Z) 1

and

[

~, ( t–c) o
I(Z, s) +

o g8(b) 1

(55)

(56)

uniformly as s-~ in the half plane, a> O. Since the solu-

tion is unique, it follows from (54) that S1s(s) and S2,(s)

have the same asymptotic behavior and are, therefore, equal.
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